1,206 research outputs found

    Fibre laser hydrophones for cosmic ray particle detection

    Full text link
    The detection of ultra high energetic cosmic neutrinos provides a unique means to search for extragalactic sources that accelerate particles to extreme energies. It allows to study the neutrino component of the GZK cut-off in the cosmic ray energy spectrum and the search for neutrinos beyond this limit. Due to low expected flux and small interaction cross-section of neutrinos with matter large experimental set-ups are needed to conduct this type of research. Acoustic detection of cosmic rays may provide a means for the detection of ultra-high energetic neutrinos. Using relative low absorption of sound in water, large experimental set-ups in the deep sea are possible that are able to detect these most rare events, but it requires highly sensitive hydrophones as the thermo-acoustic pulse originating from a particle shower in water has a typical amplitude as low as a mPa. It has been shown in characterisation measurements that the fibre optic hydrophone technology as designed and realised at TNO provides the required sensitivity. Noise measurements and pulse reconstruction have been conducted that show that the hydrophone is suited as a particle detector.Comment: Submitted to the proceedings of "13th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD13)

    Morphological sampling

    Get PDF

    Tactile Roughness Perception in the Presence of Olfactory and Trigeminal Stimulants

    Get PDF
    Previous research has shown that odorants consistently evoke associations with textures and their tactile properties like smoothness and roughness. Also, it has been observed that olfaction can modulate tactile perception. We therefore hypothesized that tactile roughness perception may be biased towards the somatosensory connotation of an ambient odorant. We performed two experiments to test this hypothesis. In the first experiment, we investigated the influence of ambient chemosensory stimuli with different roughness connotations on tactile roughness perception. In addition to a pleasant odor with a connotation of softness (PEA), we also included a trigeminal stimulant with a rough, sharp or prickly connotation (Ethanol). We expected that - compared to a No - odorant control condition—tactile texture perception would be biased towards smoothness in the presence of PEA and towards roughness in the presence of Ethanol. However, our results show no significant interaction between chemosensory stimulation and perceived tactile surface roughness. It could be argued that ambient odors may be less effective in stimulating crossmodal associations, since they are by definition extraneous to the tactile stimuli. In an attempt to optimize the conditions for sensory integration, we therefore performed a second experiment in which the olfactory and tactile stimuli were presented in synchrony and in close spatial proximity. In addition, we included pleasant (Lemon) and unpleasant (Indole) odorants that are known to have the ability to affect tactile perception. We expected that tactile stimuli would be perceived as less rough when simultaneously presented with Lemon or PEA (both associated with softness) than when presented with Ethanol or Indole (odors that can be associated with roughness). Again, we found no significant main effect of chemosensory condition on perceived tactile roughness. We discuss the limitations of this study and we present suggestions for future research.Previous research has shown that odorants consistently evoke associations with textures and their tactile properties like smoothness and roughness. Also, it has been observed that olfaction can modulate tactile perception. We therefore hypothesized that tactile roughness perception may be biased towards the somatosensory connotation of an ambient odorant. We performed two experiments to test this hypothesis. In the first experiment, we investigated the influence of ambient chemosensory stimuli with different roughness connotations on tactile roughness perception. In addition to a pleasant odor with a connotation of softness (PEA), we also included a trigeminal stimulant with a rough, sharp or prickly connotation (Ethanol). We expected that—compared to a No-odorant control condition—tactile texture perception would be biased towards smoothness in the presence of PEA and towards roughness in the presence of Ethanol. However, our results show no significant interaction between chemosensory stimulation and perceived tactile surface roughness. It could be argued that ambient odors may be less effective in stimulating crossmodal associations, since they are by definition extraneous to the tactile stimuli. In an attempt to optimize the conditions for sensory integration, we therefore performed a second experiment in which the olfactory and tactile stimuli were presented in synchrony and in close spatial proximity. In addition, we included pleasant (Lemon) and unpleasant (Indole) odorants that are known to have the ability to affect tactile perception. We expected that tactile stimuli would be perceived as less rough when simultaneously presented with Lemon or PEA (both associated with softness) than when presented with Ethanol or Indole (odors that can be associated with roughness). Again, we found no significant main effect of chemosensory condition on perceived tactile roughness. We discuss the limitations of this study and we present suggestions for future research

    Cybersickness Influences the Affectieve Appraisal of a Virtual Environment

    Get PDF
    We investigated if cybersickness has an effect on the affective appraisal of a virtual environment (VE). For many applications it is essential that users experience the simulated environment in a similar way as the corresponding real one. Navigation through VEs is known to negatively influence the physical well-being of observers by inducing cybersickness. Since people tend to misattribute their feelings to the environment they perceive, cybersicknesss may influence their affective appraisal of a VE. Participants passively watched a simulated walk through a VE, while the visual scene continuously performed a quasi-sinusoidal frontal roll oscillation. Immediately after the exposure, they reported their experienced level of cybersickness and assessed the environment on a semantic differential scale. People experiencing cybersickness rated the environment as less pleasant and more arousing, as compared to people with no symptoms. Thus, users suffering from cybersickness misattributed their unpleasant feelings to the affective qualities of the VE. Applications that rely on VEs to evoke the same emotional and affective user responses as their real equivalent should therefore minimise or account for the incidence of cybersicknes

    Uni-modal versus joint segmentation for region-based image fusion

    Get PDF
    A number of segmentation techniques are compared with regard to their usefulness for region-based image and video fusion. In order to achieve this, a new multi-sensor data set is introduced containing a variety of infra-red, visible and pixel fused images together with manually produced 'ground truth' segmentations. This enables the objective comparison of joint and unimodal segmentation techniques. A clear advantage to using joint segmentation over unimodal segmentation, when dealing with sets of multi-modal images, is shown. The relevance of these results to region-based image fusion is confirmed with task-based analysis and a quantitative comparison of the fused images produced using the various segmentation algorithms

    Water desalination by capacitive electrodialysis: Experiments and modelling

    Get PDF
    Electrodialysis-related technologies keep spreading in multiple fields, among which water desalination still plays a major role. A new technology that has not yet been thoroughly investigated is capacitive electrodialysis (CED), which couples the standard ED with capacitive electrodes. CED has a number of advantages such as removal of toxic products and system simplification. Little mention is made of this technology in the literature and, to the best of our knowledge, no modelling works have ever been presented. In this work, the CED process has been studied through experiments and modelling. A CED model is presented for the first time. With a simple calibration based on macroscopic membrane properties and the characterisation of electrode behaviour, the model is able to simulate the dynamics of simple as well as more complex layouts. An original experimental characterisation of electrodes is presented, showing how the collected data can be implemented into the model. After a successful validation with experimental data, dynamic simulations of a single pass CED unit have been performed with the aim of assessing the effect of different capacitive electrode properties on process performance. Results show how the impact of these properties is different depending on the number of cell pairs

    Editorial: Social touch

    Get PDF
    • …
    corecore